使用Python实现感知机算法
在前一节,我们学习了Rosenblatt的感知机如果工作;这一节我们用Python对其进行实现,并且应用于Iris数据集。关于代码的实现,我们使用面向对象的编程思想,定义一个感知机接口作为Python类,类中的方法主要有初始化方法,fit方法和predict方法。
import numpy as np
class Perceptron(object):
"""Perceptron classifier.
Parameters
------------
eta:float
Learning rate (between 0.0 and 1.0)
n_iter:int
Passes over the training dataset.
Attributes
-------------
w_: 1d-array
Weights after fitting.
errors_: list
Numebr of misclassifications in every epoch.
"""
def __init__(self, eta=0.01, n_iter=10):
self.eta = eta
self.n_iter = n_iter
def fit(self, X, y):
"""Fit training data.
Parameters
------------
X: {array-like}, shape=[n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_featuers is the number of features.
y: array-like, shape=[n_smaples]
Target values.
Returns
----------
self: object
"""
self.w_ = np.zeros(1 + X.shape[1]) # Add w_0
self.errors_ = []
for _ in range(self.n_iter):
errors = 0
for xi, target in zip(X, y):
update = self.eta * (target - self.predict(xi))
self.w_[1:] += update * xi
self.w_[0] += update
errors += int(update != 0.0)
self.errors_.append(errors)
return self
def net_input(self, X):
"""Calculate net input"""
return np.dot(X, self.w_[1:]) + self.w_[0]
def predict(self, X):
"""Return class label after unit step"""
return np.where(self.net_input(X) >= 0.0, 1, -1) #analoge ? : in C++
有了以上的代码实现,我们可以初始化一个新的Perceptron对象,并且对学习率eta和迭代次数n_iter赋值,fit方法先对权重参数初始化,然后对训练集中每一个样本循环,根据感知机算法对权重进行更新。类别通过predict方法进行预测。除此之外,self.errors_ 还记录了每一轮中误分类的样本数,有助于接下来我们分析感知机的训练过程。